Towards Sustainable Mining: Evaluating Pyrometallurgy as a Green Alternative in Gold Ore Processing


1Mycelia Paradise, 2Yudha Agung Pratama
1Department of Mining Engineering, Faculty of Engineering and Planning, Institut Teknologi Nasional Yogyakarta, Babarsari Street, Tambak Bayan, Caturtunggal, Depok, Sleman, Yogyakarta 55281,
2Geophysical Engineering Department, Faculty of Mineral Technology, Universitas Pembangunan Nasional Veteran Yogyakarta, Padjajaran Street, Condongcatur, Sleman, Yogyakarta 55283, Indonesia
DOI : https://doi.org/10.58806/ijirme.2024.v3i8n02

Abstract

Environmental pollution by mercury in small-scale gold mining in Kulon Progo has occurred. Amalgamation has been carried out since 1997. It caused many impacts to the environment and human health. It contaminated soil and water in Kalirejo, Kulon Progo. Referring to Minamata Convention through Law Number 11 of 2017, Indonesia through Technology Assessment and Application Agency was collaborating with United Nations Development Program for the development of a pilot plant pyrometallurgy in Kulon Progo. This study aimed to evaluate the effectiveness of pyrometallurgy methods. The research method was assessment research. This research used purposive sampling to collect data and the weighting method to process questionnaire data. Based on the research, pyrometallurgy was still not practical due to its high operational costs. On the other hand, it was environmentally friendly. The heavy metals and pH of wastewater from the scrubber of the arc furnace and roasting met the quality standards. It was possible to switch to pyrometallurgy with a society approval level of 64%..

Keywords:

amalgamation; effectiveness; gold; pyrometallurgy

References:

1) Abdul, W. and Marikar, F. (2011) ‘The environmental impact of gold mines: pollution by heavy metals’, Open Engineering, 2(2), pp. 304–313. Available at: https://doi.org/10.2478/s13531-011-0052-3.

2) Anderson, C.G. (2020) ‘14,669’, (January 2016). Available at: https://doi.org/10.1016/B978-0-12-803581-8.03609-2.

3) Chelgani, S.C., Parian, M., Parapari, P.S., Ghorbani, Y., et al. (2019) ‘A comparative study on the effects of dry and wet grinding on mineral flotation separation – a review’, Integrative Medicine Research, 8(5), pp. 5004–5011. Available at: https://doi.org/10.1016/j.jmrt.2019.07.053.

4) Chen, X., Peng, Y. and Bradshaw, D. (2014) ‘The effect of particle breakage mechanisms during regrinding on the subsequent cleaner flotation’, MINERALS ENGINEERING [Preprint]. Available at: https://doi.org/10.1016/j.mineng.2014.04.020.

5) Elisante, E. (2009) ‘Simplification of Jaw crusher for Artisanal Aggregates Miners’, Journal of Engineering and Technology Research, 1(6), pp. 102–108.

6) Ernawati, R., Cahyadi, T.A. and Rambe, S.A.A. (2021) ‘Effects of Small-Scale Gold Mining (SGM) to Mercury and Nutrient Contents in Soil in Kokap Subdistrict, Kulonprogo, Yogyakarta’, RSF Conference Series: Engineering and Technology, 1(1), pp. 191–197. Available at: https://doi.org/10.31098/cset.v1i1.394.

7) Farisi, M., Putra, A.K. and Novianti, N. (2022) ‘Penggunaan Merkuri pada Tambang Emas Ilegal: Diaturkah Dalam Minamata Convention?’, Uti Possidetis: Journal of International Law, 3(3), pp. 320–344. Available at: https://doi.org/10.22437/up.v3i3.19281.

8) Klaasen, B., Jones, P.T., Durinck, D., Dewulf, J., et al. (2010) ‘Exergy-based efficiency analysis of pyrometallurgical processes’, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 41(6), pp. 1205–1219. Available at: https://doi.org/10.1007/s11663-010-9424-y.

9) Kusuma, R.C., Budianta, W. and Arifudin (2017) ‘Kajian kandungan logam berat di lokasi penambangan emas tradisional di desa Sangon, kecamatan Kokap, kabupaten Kulon Progo’, Prosiding Seminar Nasional XII “Rekayasa Teknologi Industri dan Informasi", pp. 322–327.

10) Ojeda, M.W., Perino, E. and Ruiz, M. del C. (2009) ‘Gold extraction by chlorination using a pyrometallurgical process’, Minerals Engineering, 22(4), pp. 409–411. Available at: https://doi.org/10.1016/j.mineng.2008.09.002.

11) Rachman, R.M., Karisma, E.D. and Trihadiningrum, Y. (2017) ‘Stabilization/solidification of mercury contaminated soil of traditional gold mining in Kulon Progo Yogyakarta, Indonesia using a mixture of Portland cement and tras soil’, ARPN Journal of Engineering and Applied Sciences, 12(22), pp. 6380–6387.

12) Rachman, R.M., Mangidi, U. and Trihadiningrum, Y. (2023) ‘Solidification and stabilization of mercury-contaminated tailings in artisanal and small-scale gold mining using tras soil’, 10(4), pp. 4575–4582. Available at: https://doi.org/10.15243/jdmlm.2023.104.4575.

13) Santoso, D.H. and Gomareuzzaman, M. (2022) ‘Kelayakan Teknis Penambangan Emas Pada Wilayah Pertambangan Rakyat Studi Kasus: Desa Kalirejo, Kecamatan Kokap, Kabupaten Kulon Progo’, Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, 4(1), pp. 19–28. Available at: https://doi.org/10.30738/jst.v4i1.2480.

14) Sari, A., Pertiwi, S., Ariyani, M., Ridwan, Y., et al. (2022) Buku Saku Penghapusan Merkuri.

15) Syed, S. (2012) ‘Recovery of gold from secondary sources-A review’, Hydrometallurgy, 115–116, pp. 30–51. Available at: https://doi.org/10.1016/j.hydromet.2011.12.012.

16) Teschner, B., Smith, N.M., Borrillo-hutter, T., Quaghe, Z., et al. (2017) ‘How efficient are they really ? A simple testing method of small-scale gold miners ’ gravity separation systems’, Minerals Engineering, 105, pp. 44–51. Available at: https://doi.org/10.1016/j.mineng.2017.01.005.

17) Wong, W., Leong, E. and Mujumdar, A.S. (2009) ‘Gold Extraction and Recovery Processes For Internal Use Only Not for General Distribution’, Www.Academie.Edu [Preprint]. Available at: https://pdfs.semanticscholar.org/7559/67e38c3b788c9d41aaedec4f3d5ebd921855.pdf.