Abstract
Social Scientists and Statisticians can possibly investigate the causes and proffer solutions to population phenomena such as the crisis between farmers and Herders in Nigeria by use of statistical data and modern statistical tools, but looking at the same problem mathematically becomes very difficult. To this end logistic models can be formulated to handle the problem mathematically. Therefore, this research focuses on solving the problem by developing a population model that assigns parameters to the species involved and formulating a model reducible to differential equations. This was done by employing Lotka-Volterra’s predator – prey model to determine the equilibrium point at which both the farms and Herders will operate in peace.
References:
1) Audesirk, Terry and Gerry and Bruce Byers. ( 2009) Life on Earth. Eds. Beth Wilbur and Star Mackenzie. 5th edition. San
Francisco: Pearson Education, Inc. publishing as Pearson Benjamin Cummings,.
2) Boyce, William and Richard DiPrima. (2009) Elementary Differential Equations and Boundary Value Problems. Ed. David
Dietz. 9th edition. Hoboken, NJ: John Wiley & Sons, Inc.
3) Braun, Martin. (1975) Differential Equations and Their Applications. Vol. 15 of Applied Mathematical Sciences. New
York: Springer-Verlag,.
4) Holling CS. The functional response of predators to prey density and its role in mimicry and population
regulation.MemEntomolSoc Canada 1965;45:360.
5) Jost, C., Devulde, V. G., Vucetich, J. A., Rolf, O. P. and Arditi, R. (2005). The
6) Wolves of Isle Royale display a scale invariant satiation and ratio-dependent Predation on moose. Journal of Animal
Ecology, 74: 809-816.
7) Jost, C. and Ellner, S. P. (2000). Detecting predator dependency non parametrically. Proc. R. Soc. Lond, 89: 1611-1616
8) Kabuye, R. (1995). Mathematical Analysis of interaction within a four species Ecosystem.
9) Kar, T. K. (2003). Stability analysis of a prey-predator model with delay and harvesting. Journal of Bilological Systems,
12(1): 61-71
10) Kuang, Y. (2002). Basic properties of mathematical population models. Un published. Department of mathematics and
statistics. Arizona state University, USA.
11) Liu X, Chen L. Complex dynamics of Holling type II Lotka–Volterra predator–prey system with impulsive perturbations
on thepredator. Chaos, Solitons & Fractals 2003;16:311–20.
12) Liu B, Zhang Y, Chen L. Dynamic complexities of a Holling I predator–prey model concerning periodic biological and
chemicalcontrol. Chaos, Solitons & Fractals 2004;22:123–34
13) Lotka, A. J. (1925). Elements of physical biology. Williams and Wilkins.
14) In, Maryland, USA.
15) Malthus, T., R.(1798). An essay on principle of population and a summary view of the principle of population.
Harmondsworth, England: Penguin; Murray, J. D. (1989). Mathematical Bioliogy. Springer-Verlag. Berlin-Heldelberg-
New York. USA.
16) Murray J. D. (2002) Mathematical biology I: An introduction. Springer;.
17) Pulley, Lucas C., (2011), "Analyzing Predator-Prey Models Using Systems of Ordinary Linear Differential Equations".
Honors Theses. Paper 344.
18) Real LA. (1977) The kinetics of functional response. Am Nat 1977;111:287–300.
19) Sarnelle, O. (1994). Inferring process from pattern: trophic level abundances and imbedded interactions. Ecology, 75: 1835-
1841. Sharov, A. (http://home.comcast.net/ sharov/PopEcol/lec10/funcresp.html)
20) Schenk, D., Bersier, L. F. S. and Bacher, S. (2005). An experiment on the nature of Predation; neither prey nor ratio
dependent. Journal of Animal Ecology, 74: 86-9
21) Skalski, T. G. and Gillian, J. F. (2001). Functional responses with predator interference: Viable alternatives to the Holling
Type II model. Ecology, 82: 3083-3092.
22) Takeuch, Y. (1996). Global dynamical properties of Lotka-Volterra systems. World scientific publishing Co. Ltd,
Singapore. Entomologist, 91: 385-398.
23) Vlastmil, K. and Eisner, J. (2006). The effect of Holling Type II functional response on apparent competition. Theoretical
Population Biology, 70: 421-430.
24) Verhulst PF.(1938) Notice sur la loi que la population suit dans son accroissement. CorrespondanceMathematique et
Physique1838;10:113–21.
25) Volterra, V. (1927). Variations and fluctuations in the numbers of coexisting animal species. The Golden age of theoretical
Ecology; (1933- 1940). Lecture notes in Biomathematics, 22(1): 65-273, springer-Verlag, Berlin, Heidelberg, New York.
26) Volterra V. (1931) Variations and fluctuations of a number of individuals in animal species living together [Translation by
Chapman RNin animal ecology]. Newyork: McgrawHill; 1931. p. 409–48.
27) Xiao, D. and Ruan, S. (2001). Global dynamics of a ratio-dependent prey- predator system. J. Math. Biol, 43: 68-290.
28) Zhang S, Tan D, Chen L. (2006) Chaos in periodically forced Holling type IV predator–prey system with impulsive
perturbations. Chaos,Solitons & Fractals 2006;27:980–90.
29) Zhang S, Tan D, Chen L. (2006). Chaos in periodically forced Holling type II predator–prey system with impulsive
perturbations. Chaos,Solitons & Fractals 2006;28:367–76.