Artificial Photosynthesis a Brief Literature Review


Connor Atkinson
School of Chemistry, MSc Chemistry, Department: School of Chemistry, 0000-0003-3010-3871

Abstract

Dye Sensitized Photoelectrochemical Cells (DS-PEC) are a promising development for artificial photosynthesis. Currently however photoinduced conversion of water to hydrogen and oxygen remains limited by desorption, alternative processes and charge accumulation. This brief literature review will primarily focus on transition metal complex chromophore catalyst dyads, for water oxidation catalysis (WOC) as well as hydrogen evolution catalysis (HEC). Assessing the dyads individual charge separation, electron transfer and catalytic photoelectrochemical properties. Comparing and contrasting the techniques employed by Dye Sensitized Photoelectrochemical Cells (DS-PEC) dyads in addition to collectively evaluating their current limiting factors and suggesting potential developments for further work.

References:

1) Zhang and L. Sun, Chem. Soc. Rev., 2019, 48, 2216 DOI: 10.1039/c8cs00897c

2) Decavoli, C. Boldrini, N. Manfredi and A. Abbotto, Eur. J. Inorg. Chem. 2020, 978–999, doi:10.1002/ejic.202000026

3) U. Ndeze, J. Aidan, S. Ezike and J. Wansah, Current Research in Green and Sustainable Chemistry, 2021, 4, 100105, doi: 10.1016/j.crgsc.2021.100105

4) Y. Kurumisawa, T. Higashino, S. Nimura, Y. Tsuji, H. Iiyama and H. Imahori, J. Am. Chem. Soc, 2019, 141, 9910−9919, DOI: 10.1021/jacs.9b03302

5) L. Lu, PhD thesis, University of California, 2018.

6) E. Nikoloudakis, A. Alsaleh, G. Charalambidis, A. Coutsolelos and F. D’Souza, Chem. Commun., 2022, 58, 12078– 12081, DOI: 10.1039/d2cc03563d

7) A. Moinel, M. Brochnow, C. Aumaıtre, E. Giannoudis, J. Fize, C. Saint-Pierre, J. Pecaut, P. Maldivi, V. Artero, R. Demadrille and M. Chavarot-Kerlidou, Sustainable Energy Fuels, 2022, 6, 3565–3572, DOI: 10.1039/d2se00292b.

8) M. Brennaman, M. Gish, L. Alibabaei, M. Norris, R. Binstead, A. Nayak, A. Lapides, W. Song, R. Brown, J. Concepcion, J. Templeton, J. Papanikolas and T. Meyer, J. Phys. Chem. C, 2018, 122, 13017−13026, DOI: 10.1021/acs.jpcc.8b04837

9) L. Lindh, O. Gordivska, S. Persson, H. Michaels, H. Fan, P. Chabera, N. Rosemann, A. Gupta, L. Benesperi, J. Uhlig, O. Prakash, E. Sheibani, K. Kjaer, G. Boschloo, A. Yartsev, M. Freitag, R. Lomoth, P. Persson and K. Warnmark, Chem. Sci., 2021, 12, 16035–16053, DOI: 10.1039/d1sc02963k

10) D. Wang, Z. Xu, M. Sheridan, J. Concepcion, F. Li, T. Lian and T. Meyer, Chem. Sci., 2021, 12, 14441–14450, DOI: 10.1039/d1sc03896f

11) D. Wang, R. Sampaio, L. Troian-Gautier, S. Marquard, B. Farnum, B. Sherman, M. Sheridan, C. Dares, G. Meyer and T. Meyer. J. Am. Chem. Soc. 2019, 141, 7926−7933, DOI: 10.1021/jacs.9b02548

12) E. Giannoudis, S. Bold, C. Müller, A. Schwab, J. Bruhnke, N. Queyriaux, C. Gablin, D. Leonard, C. Saint-Pierre, D. Gasparutto, D. Aldakov, S. Kupfer, V. Artero, B. Dietzek and M. Chavarot-Kerlidou ACS Appl. Mater. Interfaces 2021, 13, 49802−49815, https://doi.org/10.1021/acsami.1c12138

13) Siliu Lyu, J. Massin, M. Pavone, A. Muñoz-García, C. Labrugere, T. Toupance, M. Chavarot-Kerlidou, V. Artero and C. Olivier, ACS Appl. Energy Mater. 2019, 2, 4971−4980, DOI:10.1021/acsaem.9b00652

14) A. Charisiadis, E. Giannoudis, Z. Pournara, A. Kosma, V. Nikolaou, G. Charalambidis, V. Artero, M. Chavarot-Kerlidou and A. Coutsolelos, Eur. J. Inorg. Chem. 2021, 1122–1129, doi.org/10.1002/ejic.202001111

15) J. Shipp, S. Parker, S. Spall, S. Peralta-Arriaga, C. Robertson, D. Chekulaev, P. Portius, S. Turega, A. Buckley, R. Rothman and J. Weinstein, Inorg. Chem. 2022, 61, 13281−13292, https://doi.org/10.1021/acs.inorgchem.2c00091

16) A. Müller, W. Wierzba, M. Pastorellia and A. Polo, J. Braz. Chem. Soc., 2021, 9, 1711-1738, https://dx.doi.org/10.21577/0103-5053.20210083

17) D. Klein, S. Rodríguez-Jiménez, M. Hoefnagel, A. Pannwitz, A. Prabhakaran, M. Siegler, T. Keyes, E. Reisner, A. Brouwer and S. Bonnet, Chem. Eur. J. 2021, 27, 17203–17212, doi.org/10.1002/chem.202102989