On Fractional Integral Inequalities Involving Riemann-Liouville Operators


1Kalpana Rajput, 2Rajshreemishra, 3D.K. Jain, 4Farooq Ahmad, 5Peer Javaid Ahmad
1Research Scholar Department of SOMAAS, Jiwaji University, Gwalior, Madhya Pradesh, India. 474001
2Department of Mathematics, Government Model Science College, Gwalior Madhya Pradesh India, 474009
3Department of Engineering Mathematics Computing, Madhav Institute of Technology and Science., Gwalior Madhya Pradesh India, 474005.
4Department of Mathematics, Government College for Women Nawakadal., Srinagar, Jammu & Kashmir, 190002
5Department of Statistics, Government College for Women Nawakadal., Srinagar, Jammu & Kashmir, 190002

Abstract

Here, we seek to prove some novel fractional integral inequalities for synchronous functions connected to the Chebyshev functional, involving the Gauss hypergeometric function. The final section presents a number of special instances as fractional integral inequalities involving Riemann-Liouville type fractional integral operators. Additionally, we take into account their applicability to other relevant, previous findings.

Keywords:

Fractional Integral Inequalities & Riemann-Liouville Operators

References:

1) G. A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs in Mathematics, Springer, New York, NY, USA, 2011.

2) S. Belarbi and Z. Dahmani, On some new fractional integral inequalities,” Journal of Inequalities in Pure and Applied Mathematics, vol. 10, no. 3, article 86, 5 pages, 2009.

3) Z. Dahmani, O. Mechouar, and S. Brahami,Certain inequalities related to the Chebyshev’s functional involving a type Riemann-Liouville operator, Bulletin of Mathematical Analysis and Applications, vol. 3, no. 4, pp. 38–44, 2011.

4) Z. Denton and A. S. Vatsala, Monotonic iterative technique for finit system of nonlinear Riemann-Liouville fractional differential equations, Opuscula Mathematica, vol. 31, no. 3, pp. 327–339, 2011.

5) S. S. Dragomir, Some integral inequalities of Gruss type, Indian Journal of Pure and Applied Mathematics, vol. 31, no. 4, pp. 397–415, 2000.

6) S. L. Kalla and A. Rao, On Gruss type inequality for hypergeometric fractional integrals, Le Matematiche, vol. 66, no. 1, pp. 57–64, 2011.

7) V. Lakshmikantham and A. S. Vatsala, Theory of fractional differential inequalities and applications, Communications in Applied Analysis, vol. 11, no. 3-4, pp. 395–402, 2007.

8) H. Ogunmez and U. M. Ozkan, Fractional quantum integral inequalities, Journal of Inequalities and Applications, vol. 2011, Article ID 787939, 7 pages, 2011.

9) S. D. Purohit and R. K. Raina, Chebyshev type inequalities for the saigo fractional integrals and their q-analogues, Journal of Mathematical Inequalities, vol. 7, no. 2, pp. 239–249, 2013.

10) J. D. Ramırez and A. S. Vatsala, Monotonic iterative technique for fractional differential equations with periodic boundary conditions, Opuscula Mathematica, vol. 29, no. 3, pp. 289–304, 2009.

11) W. T. Sulaiman, “Some new fractional integral inequalities, Journal of Mathematical Analysis, vol. 2, no. 2, pp. 23–28, 2011.

12) P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites,” Proceedings of the Mathematical Society of Kharkov, vol. 2, pp. 93–98, 1882.

13) L. Curiel and L. Galue, A generalization of the integral operators involving the Gauss’ hypergeometric function, Revista Tecnica de la Facultad de Ingenierıa Universidad del Zulia, vol. 19, no. 1, pp. 17–22, 1996.

14) V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series no. 301, Longman Scientific & Technical, Harlow, UK, 1994.

15) A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and Applications, Springer, Dordrecht, The Netherlands, 2010.

16) M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Mathematical Reports, Kyushu University, vol. 11, pp. 135–143, 1978.