Abstract
In recent years, acute leukemia has become a challenging disease for children, adolescents and adults, so there are always different treatments; None of them are considered as a definitive treatment for this disease. Finding treatments that have fewer side effects and more results has always been one of the most important and recently discussed challenges. The production of vaccines for the prevention and treatment of cancer has always been one of the candidates for the treatment of various cancers, and recently the companies Estraznika and Pfizer have achieved very good results. These days, new therapies called gene therapy have been introduced, which have shown promising results. T cell therapy is one of these treatments that has shown very good results and is currently undergoing clinical phases in various cancers, especially acute leukemias, in the United States of America. On the other hand, science-based therapy Virology is underway as virus therapy, which is undergoing animal testing and clinical trials for various cancers and viruses. It is hoped that viruses can be used as allies in the fight against cancer. With the help of microbiology, this problem has reached acceptable results and they have been able to study the microbiomes of leukemia patients and find out the results that contribute to a successful chemotherapy treatment. In this article, we aim to explore new treatments for acute leukemia and examine the results of different trials and different clinical phases. It is hoped that with the advancement of science, the treatment of leukemia patients will always be possible.
Keywords:
Acute Leukemia, cancer vaccine, virotherapy, nanomedicine therapy, immunotherapy
References:
1. Dores G.M., Devesa S.S., Curtis R.E., Linet M.S., Morton L.M." Acute leukemia incidence and patient survival among
children and adults in the United States.” 2001–2007. Blood. 2012;119:34–43.
2. Terwilliger T., Abdul-Hay M. "Acute lymphoblastic leukemia: A comprehensive review and 2017 update.” Blood Cancer
J. 2017;7:e577.
3. Dohner H., Estey E., Grimwade D., Amadori S., Appelbaum F.R., Buchner T., Dombret H., Ebert B.L., Fenaux P., Larson
R.A., et al. "Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert
panel.” Blood. 2017;129:424–447.
4. Guru Murthy G.S., Pondaiah S.K., Abedin S., Atallah E." Incidence and survival of T-cell acute lymphoblastic leukemia
in the United State.” Leuk. Lymphoma. 2019;60:1171–1178.
5. Dohner H., Weisdorf D.J., Bloomfield C.D. "Acute Myeloid Leukemia.” N. Engl. J. Med. 2015;373:1136–1152.
6. Sterner, Robert C., and Rosalie M. Sterner. "CAR-T cell therapy: Current limitations and potential strategies." Blood cancer
journal 11.4 (2021): 1-11.
7. Wu, Ming, et al. "Therapeutic cancer vaccine therapy for acute myeloid leukemia." Immunotherapy 13.10 (2021): 863-
877.
8. Fukuhara, Hiroshi, Yasushi Ino, and Tomoki Todo. "Oncolytic virus therapy: A new era of cancer treatment at
dawn." Cancer science 107.10 (2016): 1373-1379.
9. Tallman, Martin S., et al. "Acute myeloid leukemia, version 3.2019, NCCN clinical practice guidelines in oncology."
Journal of the National Comprehensive Cancer Network 17.6 (2019): 721-749.
10. Cashen, Amanda F., et al. "Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute
myeloid leukemia." Journal of Clinical Oncology 28.4 (2010): 556-561.
11. Hiddemann, Wolfgang, et al. "Management of acute myeloid leukemia in elderly patients." Journal of Clinical
Oncology 17.11 (1999): 3569-3576.
12. Montesinos, Pau, et al. "Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute
myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study." Leukemia 35.1
(2021): 62-74.
13. Döhner, Hartmut, et al. "Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia
treated with azacitidine or conventional care." Leukemia 32.12 (2018): 2546-2557.
14. Wen, Bingbing, et al. "Indirect comparison of azacitidine and decitabine for the therapy of elderly patients with acute
myeloid leukemia: A systematic review and network meta-analysis." Experimental hematology & oncology 9.1 (2020): 1-
10.
15. Platzbecker, U., et al. "Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT:
results of the RELAZA trial." Leukemia 26.3 (2012): 381-389.
16. Schuh, Andre C., et al. "Azacitidine in adult patients with acute myeloid leukemia." Critical reviews in
oncology/hematology 116 (2017): 159-177.
17. De Lima, Marcos, et al. "Maintenance therapy with low‐dose azacitidine after allogeneic hematopoietic stem cell
transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding
study." Cancer 116.23 (2010): 5420-5431.
18. Huang, Lifen, et al. "Nanomedicine–a promising therapy for hematological malignancies." Biomaterials science 8.9
(2020): 2376-2393.
19. Ansari, Mohammed T., et al. "Lipid-based nanocarriers for cancer and tumor treatment." Current pharmaceutical
design 26.34 (2020): 4272-4276.
20. Grosso, Dolores A., Rosemary C. Hess, and Mark A. Weiss. "Immunotherapy in acute myeloid leukemia." Cancer 121.16
(2015): 2689-2704.
21. Tatar, Andra-Sorina, et al. "Nanomedicine approaches in acute lymphoblastic leukemia." Journal of Controlled Release
238 (2016): 123-138.
22. Tatar, Andra-Sorina, et al. "Nanomedicine approaches in acute lymphoblastic leukemia." Journal of Controlled Release
238 (2016): 123-138.
23. Sauvage, Félix, et al. "The use of nanocarriers in acute myeloid leukaemia therapy: challenges and current status." Current
Pharmaceutical Biotechnology 17.1 (2016): 30-41.
24. DiNardo, Courtney D., et al. "Azacitidine and venetoclax in previously untreated acute myeloid leukemia." New England
Journal of Medicine 383.7 (2020): 617-629.
25. Othman, Tamer A., et al. "An evaluation of venetoclax in combination with azacitidine, decitabine, or low-dose cytarabine
as therapy for acute myeloid leukemia." Expert review of hematology 14.5 (2021): 407-417.
26. Qiu, Jie, et al. "Glutathione-sensitive hyaluronic acid-mercaptopurine prodrug linked via carbonyl vinyl sulfide: a robust
and CD44-targeted nanomedicine for leukemia." Biomacromolecules 18.10 (2017): 3207-3214.
27. Sami, Shaheedul A., et al. "Current and future molecular targets for acute myeloid leukemia therapy." Current Treatment
Options in Oncology 21.1 (2020): 1-16.
28. Chandran, Parwathy, et al. "Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous
population of primary acute myeloid leukemia cells including refractory and relapsed cases." Nanomedicine:
Nanotechnology, Biology and Medicine 10.4 (2014): 721-732.
29. Prebet, Thomas, and Norbert Vey. "Vorinostat in acute myeloid leukemia and myelodysplastic syndromes." Expert opinion
on investigational drugs 20.2 (2011): 287-295.
30. Baroni ML, Martinez DS, Aguera FG, Ho HR, Castella M, Zanetti SR, Hernandez TV, de la Guardia RD, Castaño J,
Anguita E, Vives S. “41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo.”
Journal for immunotherapy of cancer. 2020;8(1).
31. Liu J, Tong J, Yang H. “Targeting CD33 for acute myeloid leukemia therapy.” BMC cancer. 2022 Dec;22(1):1-7.
32. Tatsumi, Eiji. "A mini-review of CD13 antigen in AML: easy induction or enhancement of expression in in vitro culture
and necessary consideration for assessment." The Southeast Asian Journal of Tropical Medicine and Public Health 33
(2002): 155-157.
33. Meyer JE, Loff S, Dietrich J, Spehr J, Jurado Jiménez G, von Bonin M, Ehninger G, Cartellieri M, Ehninger A. “Evaluation
of switch-mediated costimulation in trans on universal CAR-T cells (UniCAR) targeting CD123-positive AML.”
Oncoimmunology. 2021 Jan 1;10(1):1945804.
34. He X, Feng Z, Ma J, Ling S, Cao Y, Gurung B, Wu Y, Katona BW, O’Dwyer KP, Siegel DL, June CH. “Bispecific and
split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia.” Blood. 2020 Mar 5;135(10):713-23.
35. Rotiroti MC, Buracchi C, Arcangeli S, Galimberti S, Valsecchi MG, Perriello VM, Rasko T, Alberti G, Magnani CF,
Cappuzzello C, Lundberg F. “Targeting CD33 in chemoresistant AML patient-derived xenografts by CAR-CIK cells
modified with an improved SB transposon system.” Molecular Therapy. 2020 Sep 2;28(9):1974-86.
36. Wang J, Chen S, Xiao W, Li W, Wang L, Yang S, Wang W, Xu L, Liao S, Liu W, Wang Y. “CAR-T cells targeting CLL1 as an approach to treat acute myeloid leukemia.” Journal of hematology & oncology. 2018 Dec;11(1):1-3.
37. Hofmann, Susanne, et al. "Chimeric antigen receptor (CAR) T cell therapy in acute myeloid leukemia (AML)." Journal of
clinical medicine 8.2 (2019): 200.
38. Chitre S, Gaken J, Venuso A, Mufti GJ. “Single and dual targeting chimeric antigen receptor T-cell therapy in acute
myeloid leukemia.” Blood. 2020 Nov 5; 136:25.
39. John S, Chen H, Deng M, Gui X, Wu G, Chen W, Li Z, Zhang N, An Z, Zhang CC. “A novel anti-LILRB4 CAR-T cell
for the treatment of monocytic AML.” Molecular Therapy. 2018 Oct 3;26(10):2487-95.
40. Maiorova V, Mollaev MD, Vikhreva P, Kulakovskaya E, Pershin D, Chudakov DM, Kibardin A, Maschan MA, Larin S.
“Natural Flt3Lg-Based Chimeric Antigen Receptor (Flt3-CAR) T Cells Successfully Target Flt3 on AML Cell Lines.”
Vaccines. 2021 Nov;9(11):1238.
41. Fiorenza, Salvatore, and Cameron J. Turtle. "CAR-T cell therapy for acute myeloid leukemia: preclinical rationale, current
clinical progress, and barriers to success." BioDrugs 35.3 (2021): 281-302.
42. Sommer C, Cheng HY, Nguyen D, Dettling D, Yeung YA, Sutton J, Hamze M, Valton J, Smith J, Djuretic I, ChaparroRiggers J. “Allogeneic FLT3 CAR T cells with an off-switch exhibit potent activity against AML and can be depleted to
expedite bone marrow recovery.” Molecular Therapy. 2020 Oct 7;28(10):2237-51.
43. Laborda E, Mazagova M, Shao S, Wang X, Quirino H, Woods AK, Hampton EN, Rodgers DT, Kim CH, Schultz PG,
Young TS. “Development of a chimeric antigen receptor targeting C-type lectin-like molecule-1 for human acute myeloid
leukemia.” International journal of molecular sciences. 2017 Nov;18(11):2259.
44. Zhang H, Gan WT, Hao WG, Wang PF, Li ZY, Chang LJ. “Successful anti-CLL1 CAR T-cell therapy in secondary acute
myeloid leukemia.” Frontiers in Oncology. 2020 May 27;10:685.
45. Loff S, Dietrich J, Meyer JE, Riewaldt J, Spehr J, von Bonin M, Gründer C, Swayampakula M, Franke K, Feldmann A,
Bachmann M. “Rapidly switchable universal CAR-T cells for treatment of CD123-positive leukemia.” Molecular TherapyOncolytics. 2020 Jun 26;17:408-20.
46. El Khawanky N, Hughes A, Yu W, Myburgh R, Matschulla T, Taromi S, Aumann K, Clarson J, Vinnakota JM,
Shoumariyeh K, Miething C. “Demethylating therapy increases anti-CD123 CAR T cell cytotoxicity against acute myeloid
leukemia. “ Nature communications. 2021 Nov 8;12(1):1-20.
47. Gomes-Silva D, Atilla E, Atilla PA, Mo F, Tashiro H, Srinivasan M, Lulla P, Rouce RH, Cabral JM, Ramos CA, Brenner
MK. “CD7 CAR T cells for the therapy of acute myeloid leukemia.” Molecular Therapy. 2019 Jan 2;27(1):272-80.
48. Gill, Saar I. "How close are we to CAR T-cell therapy for AML?." Best practice & research Clinical haematology 32.4
(2019): 101104.
49. Müller LM, Holmes M, Michael JL, Scott GB, West EJ, Scott KJ, Parrish C, Hall K, Stäble S, Jennings VA, Cullen M.
“Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus
A21.” Journal for immunotherapy of cancer. 2019 Dec;7(1):1-6.
50. Bais, Swarna, et al. "Oncolytic virotherapy for hematological malignancies." Advances in virology 2012 (2012).
51. Wu, Ming, et al. "Therapeutic cancer vaccine therapy for acute myeloid leukemia." Immunotherapy 13.10 (2021): 863-
877.
52. Kerage D, Soon MS, Doff BL, Kobayashi T, Nissen MD, Lam PY, Leggatt GR, Mattarollo SR. “Therapeutic vaccination
with 4–1BB co-stimulation eradicates mouse acute myeloid leukemia.” OncoImmunology. 2018 Oct 3;7(10):e1486952.
53. Liu, Yuxin, et al. "Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era?."
Blood reviews 34 (2019): 67-83.
54. Minev BR, Lander E, Feller JF, Berman M, Greenwood BM, Minev I, Santidrian AF, Nguyen D, Draganov D, Killinc
MO, Vyalkova A. “First-in-human study of TK-positive oncolytic vaccinia virus delivered by adipose stromal vascular
fraction cells.” Journal of translational medicine. 2019 Dec;17(1):1-5.
55. Anguille, Sébastien, et al. "Interleukin-15 dendritic cells as vaccine candidates for cancer immunotherapy." Human
vaccines & immunotherapeutics 9.9 (2013): 1956-1961.
56. Maurer S, Salih HR, Smirnow I, Lauer UM, Berchtold S. “Suicide gene armed measles vaccine virus for the treatment of
AML.” International journal of oncology. 2019 Aug 1;55(2):347-58
57. Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. “Interleukin-15-cultured dendritic
cells enhance anti-tumor gamma delta T cell functions through IL-15 secretion.” Frontiers in immunology. 2018 Apr
10;9:658.
58. Sendker, Stephanie, Dirk Reinhardt, and Naghmeh Niktoreh. "Redirecting the immune microenvironment in acute myeloid
leukemia." Cancers 13.6 (2021): 1423.
59. Shi Y, Dincheva-Vogel L, Ayemoba CE, Fung JP, Bergamaschi C, Pavlakis GN, Farzaneh F, Gaensler KM. “IL-15/IL15Rα/CD80-expressing AML cell vaccines eradicate minimal residual disease in leukemic mice.” Blood advances. 2018
Nov 27;2(22):3177-92.
60. Subklewe, Marion, et al. "New generation dendritic cell vaccine for immunotherapy of acute myeloid leukemia." Cancer
Immunology, Immunotherapy 63.10 (2014): 1093-1103.
61. Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N, Nijs G, Stein B, Lion E, Van Driessche
A, Vandenbosch I. “Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid
leukemia.” Blood, The Journal of the American Society of Hematology. 2017 Oct 12;130(15):1713-21.
62. Maslak PG, Dao T, Bernal Y, Chanel SM, Zhang R, Frattini M, Rosenblat T, Jurcic JG, Brentjens RJ, Arcila ME, Rampal
R.” Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia.” Blood advances.
2018 Feb 13;2(3):224-34.
63. Van Acker, Heleen H., et al. "Dendritic cell-based immunotherapy of acute myeloid leukemia." Journal of clinical medicine
8.5 (2019): 579.
64. van de Loosdrecht AA, van Wetering S, Santegoets SJ, Singh SK, Eeltink CM, den Hartog Y, Koppes M, Kaspers J,
Ossenkoppele GJ, Kruisbeek AM, de Gruijl TD. “A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission
treatment of elderly patients with acute myeloid leukemia.” Cancer Immunology, Immunotherapy. 2018 Oct;67(10):1505-
18.
65. Wang X, Yang Y, Wang N, Wu X, Xu J, Zhou Y, Zhao X, He Z. “Mesenchymal stem cell carriers enhance antitumor
efficacy induced by oncolytic reovirus in acute myeloid leukemia.” International Immunopharmacology. 2021 May
1;94:107437.
66. Hadryś, Agata, et al. "Mesenchymal stem cells as carriers for systemic delivery of oncolytic viruses." European journal of
pharmacology 874 (2020): 172991.
67. Johnson DT, Zhou J, Kroll AV, Fang RH, Yan M, Xiao C, Chen X, Kline J, Zhang L, Zhang DE. „Acute myeloid leukemia
cell membrane-coated nanoparticles for cancer vaccination immunotherapy.” Leukemia. 2021 Nov 29:1-2.
68. Shetab Boushehri, Maryam A., and Alf Lamprecht. "TLR4-based immunotherapeutics in cancer: a review of the
achievements and shortcomings." Molecular pharmaceutics 15.11 (2018): 4777-4800.
69. Zhong G, Jin G, Zeng W, Yu C, Li Y, Zhou J, Zhang L, Yu L. “Conjugation of TLR7 Agonist Combined with
Demethylation Treatment Improves Whole-Cell Tumor Vaccine Potency in Acute Myeloid Leukemia.” International
Journal of Medical Sciences. 2020;17(15):2346.
70. Melzer MK, Zeitlinger L, Mall S, Steiger K, Schmid RM, Ebert O, Krackhardt A, Altomonte J. “Enhanced safety and
efficacy of oncolytic VSV therapy by combination with T cell receptor transgenic T cells as carriers.” Molecular TherapyOncolytics. 2019 Mar 29;12:26-40.
71. Mi, Yu, et al. "Emerging nano‐/microapproaches for cancer immunotherapy." Advanced Science 6.6 (2019): 1801847.
72. Zhang C, Wang XQ, Zhang RL, Liu F, Wang Y, Yan ZL, Song YP, Yang T, Li P, Wang Z, Ma YY. Donor-derived CD19
CAR-T cell therapy of relapse of CD19-positive B-ALL post allotransplant. Leukemia. 2021 Jun;35(6):1563-70.
73. Sheth, Vipul S., and Jordan Gauthier. "Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL." Bone
marrow transplantation 56.3 (2021): 552-566.
74. Cappell KM, Sherry RM, Yang JC, Goff SL, Vanasse DA, McIntyre L, Rosenberg SA, Kochenderfer JN. “Long-term
follow-up of anti-CD19 chimeric antigen receptor T-cell therapy.” Journal of Clinical Oncology. 2020 Nov
10;38(32):3805-15.
75. Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, Halton E, Wang X, Senechal B, Purdon T, Cross JR.
“Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute
lymphoblastic leukemia.” Cancer discovery. 2018 Aug 1;8(8):958-71.
76. Korell F, Schubert ML, Sauer T, Schmitt A, Derigs P, Weber TF, Schnitzler P, Müller-Tidow C, Dreger P, Schmitt M.
“Infection Complications after Lymphodepletion and Dosing of Chimeric Antigen Receptor T (CAR-T) Cell Therapy in
Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia or B Cell Non-Hodgkin Lymphoma.” Cancers. 2021
Jan;13(7):1684.
77. Zhang C, Wang XQ, Zhang RL, Liu F, Wang Y, Yan ZL, Song YP, Yang T, Li P, Wang Z, Ma YY. “Donor-derived CD19
CAR-T cell therapy of relapse of CD19-positive B-ALL post allotransplant.” Leukemia. 2021 Jun;35(6):1563-70.
78. Pillai V, Muralidharan K, Meng W, Bagashev A, Oldridge DA, Rosenthal J, Van Arnam J, Melenhorst JJ, Mohan D,
DiNofia AM, Luo M.” CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior
blinatumomab therapy.” Blood advances. 2019 Nov 26;3(22):3539-49.
79. Zhao, Juanjuan, Yongping Song, and Delong Liu. "Recent advances on blinatumomab for acute lymphoblastic leukemia."
Experimental Hematology & Oncology 8.1 (2019): 1-8.
80. Amrolia PJ, Wynn R, Hough RE, Vora A, Bonney D, Veys P, Chiesa R, Rao K, Clark L, Al-Hajj M, Cordoba SP. “Phase
I study of AUTO3, a bicistronic chimeric antigen receptor (CAR) T-cell therapy targeting CD19 and CD22, in pediatric
patients with relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL): Amelia Study.” Blood. 2019 Nov
13;134:2620.
81. Liu S, Deng B, Yin Z, Lin Y, An L, Liu D, Pan J, Yu X, Chen B, Wu T, Chang AH. „Combination of CD19 and CD22
CAR‐T cell therapy in relapsed B‐cell acute lymphoblastic leukemia after allogeneic transplantation.” American Journal
of Hematology. 2021 Jun 1;96(6):671-9.
82. Shah BD, Bishop MR, Oluwole OO, Logan AC, Baer MR, Donnellan WB, O’Dwyer KM, Holmes H, Arellano ML,
Ghobadi A, Pagel JM. “KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic
leukemia: ZUMA-3 phase 1 results.” Blood, The Journal of the American Society of Hematology. 2021 Jul 8;138(1):11-
22.
83. Li S, Zhang J, Wang M, Fu G, Li Y, Pei LI, Xiong Z, Qin D, Zhang R, Tian X, Wei Z. “Treatment of acute lymphoblastic
leukaemia with the second generation of CD 19 CAR‐T containing either CD 28 or 4‐1 BB.” British journal of
haematology. 2018 May;181(3):360-71.
84. Li Z, Chen X, Liu L, Zhou M, Zhou G, Liu T. “Development of the T-ALLiPSC-based Therapeutic Cancer Vaccines for
T-cell acute Lymphoblastic Leukemia.”
85. Rossig C, Pule M, Altvater B, Saiagh S, Wright G, Ghorashian S, Clifton-Hadley L, Champion K, Sattar Z, Popova B,
Hackshaw A. “Vaccination to improve the persistence of CD19CAR gene-modified T cells in relapsed pediatric acute
lymphoblastic leukemia.” Leukemia. 2017 May;31(5):1087-95.
86. Wu M, Zhang L, Zhang H, Ning J, Tu S, He Y, Li Y. “CD19 chimeric antigen receptor–redirected T cells combined with
epidermal growth factor receptor pathway substrate 8 peptide–derived dendritic cell vaccine in leukemia.” Cytotherapy.
2019 Jun 1;21(6):659-70.
87. Rengifo, Andrés Felipe Chamorro, et al. "A new and efficient carboxymethyl-hexanoyl chitosan/dodecyl sulfate
nanocarrier for a pyrazoline with antileukemic activity." Materials Science and Engineering: C 105 (2019): 110051.
88. Kumar, Lalit, et al. "Nanofiber as a novel vehicle for transdermal delivery of therapeutic agents: challenges and
opportunities." Future Journal of Pharmaceutical Sciences 7.1 (2021): 1-17.
89. Wu, Xiaoyan, et al. "Cooperation of IRAK1/4 inhibitor and ABT-737 in nanoparticles for synergistic therapy of T cell
acute lymphoblastic leukemia." International Journal of Nanomedicine 12 (2017): 8025
90. Bayat, Narges, et al. "Thiol-reactive star polymers functionalized with short ethoxy-containing moieties exhibit enhanced
uptake in acute lymphoblastic leukemia cells." International Journal of Nanomedicine 14 (2019): 9795
91. Tinoco, Ana, et al. "BSA/ASN/Pol407 nanoparticles for acute lymphoblastic leukemia treatment." Biochemical
Engineering Journal 141 (2019): 80-88.
92. Nunes, João CF, et al. "Recent strategies and applications for L-asparaginase confinement." Molecules 25.24 (2020): 5827.
93. Gan, Donghui, et al. "Doxorubicin/Nucleophosmin Binding Protein-Conjugated Nanoparticle Enhances Anti-leukemia
Activity in Acute Lymphoblastic Leukemia Cells in vitro and in vivo." Frontiers in pharmacology 12 (2021): 1255
94. Li, Shanshan, et al. "Anti-CD19 mAb modified mesoporous titanium dioxide as exclusively targeting vector for efficient
B-lymphoblastic leukemia therapy." Journal of Pharmaceutical Sciences 110.7 (2021): 2733-2742
95. Bailey, Katharine E., et al. "The Relevance of CD20 Targeting of Oncolytic Measles Virus in the Treatment of Adult Acute
Lymphoblastic Leukemia." Blood 130 (2017): 3891.
96. Castleton, Anna, et al. "Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute
lymphoblastic leukemia in the presence of humoral immunity." Blood, The Journal of the American Society of Hematology
123.9 (2014): 1327-1335.
97. Chua LL, Rajasuriar R, Lim YA, Woo YL, Ariffin H. “Temporal changes in gut microbiota profile in children with acute
lymphoblastic leukemia prior to commencement-, during-, and post-cessation of chemotherapy.” BMC cancer. 2020
Dec;20(1):1-1.
98. De Pietri S, Ingham AC, Frandsen TL, Rathe M, Krych L, Castro‐Mejía JL, Nielsen DS, Nersting J, Wehner PS,
Schmiegelow K, Hasle H. “Gastrointestinal toxicity during induction treatment for childhood acute lymphoblastic
leukemia: the impact of the gut microbiota.” International journal of cancer. 2020 Oct 1;147(7):1953-62.
99. Rattanathammethee T, Tuitemwong P, Thiennimitr P, Sarichai P, Na Pombejra S, Piriyakhuntorn P, Hantrakool S, ChaiAdisaksopha C, Rattarittamrong E, Tantiworawit A, Norasetthada L. “Gut microbiota profiles of treatment-naïve adult
acute myeloid leukemia patients with neutropenic fever during intensive chemotherapy.” PloS one. 2020 Oct
28;15(10):e0236460.
100.: Hueso T, Ekpe K, Mayeur C, Gatse A, Joncquel-Chevallier Curt M, Gricourt G, Rodriguez C, Burdet C, Ulmann G, Neut
C, Amini SE. “Impact and consequences of intensive chemotherapy on intestinal barrier and microbiota in acute myeloid
leukemia: the role of mucosal strengthening.” Gut microbes. 2020 Nov 9;12(1):1800897
101.Song Y, Gyarmati P. “Microbiota changes in a pediatric acute lymphocytic leukemia mouse model.” MicrobiologyOpen.
2020 Mar;9(3):e982.
102.Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Nalluri H, Kaiser T, Ramamoorthy S, Holtan SG, Khoruts A, Weisdorf
DJ, Staley C. Altered “microbiota-host metabolic cross talk preceding neutropenic fever in patients with acute leukemia.”
Blood Advances. 2021 Oct 26;5(20):3937-50.
103.Malard F, Vekhoff A, Lapusan S, Isnard F, D’incan-Corda E, Rey J, Saillard C, Thomas X, Ducastelle-Lepretre S, Paubelle
E, Larcher MV. “Gut microbiota diversity after autologous fecal microbiota transfer in acute myeloid leukemia patients.”
Nature communications. 2021 May 25;12(1):1-1.
104.Lee MS, Ramakrishna B, Moss AC, Gold HS, Branch‐Elliman W. “Successful treatment of fulminant Clostridioides
difficile infection with emergent fecal microbiota transplantation in a patient with acute myeloid leukemia and prolonged,
severe neutropenia.” Transplant Infectious Disease. 2020 Feb;22(1):e13216.
105.Shen Z, Gu X, Cao H, Mao W, Yang L, He M, Zhang R, Zhou Y, Liu K, Wang L, Liu L. “Characterization of microbiota
in acute leukemia patients following successful remission induction chemotherapy without antimicrobial prophylaxis.”
International Microbiology. 2021 May;24(2):263-73.